

MARTEAUX DE FORGEAGE HYDRAULIQUES

Puissance maximale - Dépense minimale

MARTEAUX DE FORGEAGE HYDRAULIQUES

Ultra dynamique et robuste

Pour les forgerons, les marteaux hydrauliques sont les machines de formage par excellence : ils délivrent un effort de formage maximal au moindre coût ! De nombreuses pièces forgées, en particulier les pièces complexes, lourdes et même très lourdes, ne peuvent être fabriquées de manière rentable que sur un marteau de forgeage hydraulique.

LASCO est le pionnier et l'inventeur du système d'entraînement hydraulique pour les marteaux de forgeage. Profitez de notre longue expérience et de notre orientation résolument tournée vers l'avenir! En matière de développement et de fabrication de marteaux-pilons à entraînement hydraulique, LASCO est et reste à la pointe des fournisseurs internationaux.

ÉCONOMISER L'ÉNERGIE, C'EST GAGNANT AU NIVEAU DES COÛTS MODERNISEZ VOTRE TECHNIQUE D'ENTRAÎNEMENT

Bien entendu, tous les avantages de notre entraînement hydraulique peuvent également être appliqués à d'autres types de marteaux, quelle que soit leur marque.

Profitez de la possibilité de modernisation permettant d'économiser de l'énergie et installez le système d'entraînement LASCO.

COMPARAISON DIRECTE:

MARTEAU PNEUMATIQUE VS MARTEAU HYDRAULIQUE

Vous trouverez de plus amples informations dans notre brochure "Économiser l'énergie".

Scannez ce code QR pour en savoir plus.

VOS AVANTAGES

d'un coup d'œil:

Efficacité économique maximale

- Dosage précis de l'énergie et excellente répétabilité des frappes, même à haute fréquence de frappe
- Grande capacité de formage et force finale très élevée pour un investissement comparativement faible
- Réduction d'environ 76 % des coûts énergétiques par rapport aux unités à air ou à vapeur

Disponibilité opérationnelle immédiate

- Indépendant du réseau d'air ou de vapeur
- La régulation de température et le système de filtration maintiennent l'huile toujours prête à l'emploi

Durée de vie optimale de la matrice

 Temps de contact très courts pour une durée de vie importante de l'outillage

Système de guidage thermiquement neutre

▶ Guidage en X à faible jeu et à lubrification automatique

Protection contre les fuites d'huile

Clapet de sûreté à action rapide et autonome

Excellente étanchéité de la tige-piston

 Éléments d'étanchéité actifs avec retour d'huile de traîne et douilles de guidage non divisées

Utilisation facile et sûre

- Adaptation automatique aux différentes hauteurs de matrices
- Commande de sécurité pour éviter tout déclenchement incontrôlé de frappes
- Pédale certifiée et niveau de sécurité hydraulique surveillé
- Techniques de commande et de diagnostic à la pointe du progrès

Durabilité

- Les éléments d'amortissement minimisent les émissions de vibrations
- Modernisation permettant d'économiser l'énergie de pratiquement tous les anciens marteaux
- Rendement global élevé
- Rendement énergétique élevé des moteurs d'entraînement et commande de soupapes à modulation de largeur d'impulsion

LASCO KNOW-HOW 4.0 - Paré pour l'avenir

LASCO est le spécialiste des machines-outils modernes de forgeage et d'emboutissage, ainsi que des solutions d'automatisation et de robotisation pour des lignes de production efficaces et intelligentes. Dès la phase d'ingénierie, la mise en service virtuelle LASCO permet de simuler et d'optimiser, sur la base d'un jumeau numérique de l'installation, tous les processus des machines et des états de fonctionnement pour l'ensemble de l'installation de

tous les processus des machines et des états de fonctionnement pour l'ensemble de l'installation de fabrication. Même en production, nos experts vous accompagnent virtuellement **Vous trouverez**

- le système LASCO Remote Assistance permet, via un flux vidéo et des lunettes connectées, une transmission bidirectionnelle de l'image et du son.

Vous trouverez des informations plus détaillées dans notre brochure Automation & Robotique

MARTEAU DE FORGEAGE À DOUBLE EFFET HO-U

Flexible et économique

Le marteau hydraulique HO-U à commande librement programmable est un élément décisif pour augmenter la production et la qualité dans votre entreprise.

Grâce à la poussée hydraulique, la masse est accélérée par le chemin le plus court possible jusqu'à la vitesse d'impact souhaitée d'environ 5 m/s.

Énergie

▶ De 16 kJ à env. 200 kJ pour les petites, moyennes et grandes pièces.

Bâti

Le bâti en U dispose d'une répartition des masses idéale et d'une très grande rigidité. Réalisé en acier allié moulé, il est soumis à un traitement thermique spécifique et contrôlé.

Tige-piston

Une grande stabilité est obtenue grâce à l'utilisation de matériaux de haute qualité, de plusieurs processus de finition et de traitements de surface complexes.

Scanner pour en savoir plus sur le forgeage par marteau automatisé!

Entraînement et principe d'entraînement

Le bloc foré en acier forgé réunit les principaux éléments de commande hydraulique, ce qui permet d'obtenir une grande sécurité de fonctionnement et un rendement extrêmement élevé. Le fluide hydraulique est nettoyé en permanence grâce à un filtrage surveillé. La régulation automatique de température garantit un fonctionnement constant et une plus longue durée de vie de l'huile.

Masse et guidage de la masse

La masse du marteau est en acier allié forgé. La disposition en X des glissières et leurs formes optimisées garantissent d'excellentes propriétés de guidage. La lubrification automatique à huile sous pression assure des conditions de glissement optimales et une usure minimale.


Sécurité

 Une commande de sécurité - dépassant les prescriptions de prévention des accidents - permet d'éviter le déclenchement incontrôlé des frappes.

BREVET LASCO - Cellule de forgeage au marteau entièrement automatique

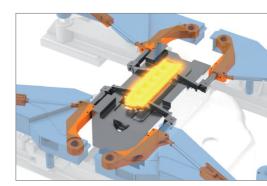
L'automatisation développée par LASCO se compose de deux robots de forgeage travaillant de manière synchrone et qui sont équipés de **pinces spéciales brevetées.** Le concept de préhension LASCO et la programmation spéciale minimisent les vibrations et les chocs et permettent un forgeage sûr, automatisé et fiable.

LASCO KNOW-HOW: Les calculs par éléments finis en régimes transitoires permettent d'évaluer les charges dominantes lors de la frappe du marteau et d'en déduire des améliorations de conception.

DONNÉES TECHNIQUES SÉRIE TYPE HO-U:

SÉRIE TYPE HO-U		160	200	250	315	400	500	630	800	1000	1250	1600	2000
Énergie de frappe (matrice supérieur installée, poids nominal)	e [kJ]	16	20	25	31,5	40	50	63	80	100	125	160	200
Poids nominal de la matrice supérieu	ıre [kg]	100	150	200	250	400	550	600	700	800	1200	1800	2500
Fréquence de frappe (à puissance nominale)	nv. [1/min]	95	95	92	90	90	90	85	80	78	70	68	63
Vitesse finale de la masse	[m/s]	5	5	5	5	5	5	5	5	5	5	5	5
Profondeur de la masse	[mm]	460	500	570	590	590	690	760	800	900	1000	1100	1200
Poids de la masse	[kg]	1250	1500	1900	2300	2700	3200	4300	5600	7100	8500	11000	13500
Course maxi de la masse	[mm]	640	660	690	700	710	730	760	810	850	930	960	980
Course de la masse pour atteindre l'énergie de frappe maximale (distance entre l'ébauche de forgeage et la matrice supérieure) min. [mm]		480	480	480	500	500	500	520	560	600	680	710	730
Hauteur max. de l'ensemble des 2 m (hors queues d'aronde, lopin inclus)	atrices [mm]	320	360	390	400	430	450	460	530	550	750	830	910
Hauteur min. de l'ensemble des 2 ma (hors queues d'aronde)	trices [mm]	160	180	180	200	220	220	220	280	300	500	580	660
Largeur libre entre les glissières	[mm]	580	580	650	700	700	700	800	850	850	1000	1100	1150
Largeur du pied de bâti	[mm]	2290	2290	2800	2800	2800	2800	3000	3100	3390	3600	3600	4400
Profondeur du pied de bâti	[mm]	1250	1400	1400	1400	1400	1400	2000	2000	2450	2450	2450	2450
Poids du bâti	[t]	24	25,5	38	41,5	48	58	81	101	130	140	156	180
Largeur de la plaque de base	[mm]	/	/	/	/	/	/	/	/	/	4100	4100	4950
Profondeur de la plaque de base	[mm]	/	/	/	/	/	/	/	/	/	3100	3100	3150
Poids de la plaque de base	[t]	/	/	/	/	/	/	/	/	/	32	45	80
Poids total	env. [t]	32,5	36	51	55,5	68	80	105	133	165	215	247	326
Masse totale à amortir	env. [t]	33	37,5	52,5	57	70,5	83	108	137,5	169,5	221	254	339
Masse en mouvement	env. [t]	1350	1650	2150	2600	3150	3800	4950	6400	8000	9850	13000	16000
Hauteur de l'installation au-dessus du sol pour une hauteur du bord supérieur du tas (par rapport au sol)	env. [mm]	4310 (700)	4380 (700)	4910 (700)	4975 (700)	4905 (700)	5080 (700)	5110 (700)	5850 (700)	6100 (700)	6590 (700)	6720 (700)	7345 (550)
Hauteur totale du marteau	env. [mm]	5000	5100	5850	6100	6050	6550	6600	7300	7950	8850	9300	10100
Puissance de raccordement du mote principal (pour 400 V / 50Hz)	eur [kW]	37	45	55	55	2x45	2x55	2x75	2x90	2x90	2x132	2x132	2x160
Puissance de raccordement du circui de refroidissement	it [kW]	2,2	3	3	3	4	4	4	5,5	5,5	5,5	2x4	2x4
Puissance de refroidissement	[kW]	41	80	80	80	116	116	116	160	160	160	2x116	2x116
Puissance de raccordement de la pompe de lubrification	[kW]	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18
Puissance de raccordement totale	env. [kVA]	55	65	80	80	120	150	195	235	235	330	335	400

[▶] Toutes les données sont des valeurs par défaut et peuvent être adaptées en fonction du contrat.


MARTEAU HYDRAULIQUE À CONTRE-FRAPPE GH

Énergie de frappe et précision maximales

Pour les puissances plus élevées (>200 kJ), les grandes pièces et les pièces surdimensionnées, on utilise de préférence le marteau à contre-frappe de type GH. La distribution optimale de la masse et de la vitesse entre les masses supérieure et inférieure empêche les pièces forgées de sauter hors de la matrice inférieure. La force de forgeage extrêmement élevée permet d'usiner avec précision des pièces forgées de grande taille et même des pièces plates.

Énergie:

- De 200 kJ à env. 500 kJ
- Dans certains cas (exigences liées au processus, nature du sol, etc.), une contre-frappe GH de plus petite dimension (à partir de 63 kJ) peut être la solution optimale pour des applications individuelles (comparer p. ex. le poids total et le système de fréquence du GH 1600 par rapport au HO-U 1600).

L'éjecteur à coins soulève la pièce forgée et permet au robo de manipulation de prendre la pièce et de la transporter d'u facon sûre.

Bâti:

Construction massive en mécano-soudée, composée d'une

Le mouvement des masses est contrôlé avec précision par le système et inférieure va de 1:3,7 à 1:4 (en fonction de la taille du contre-frappe), ce

DONNÉES TECHNIQUES SÉRIE TYPE GH:

SÉRIE TYPE GH		630	1000	1250	1600	2000	2500	3150	4000	5000
Énergie de frappe	[k]	63	100	125	160	200	250	315	400	500
Poids nominal des matrices supérieure et infé	450	750	950	1200	1500	1800	2400	3000	3750	
Fréquence de frappe (à énergie maxi)	47	46	44	44	42	42	40	38	35	
Vitesse de la masse supérieure (à énergie max	ri) [m/s]	4,6	4,6	4,6	4,6	4,6	4,6	4,6	4,6	4,6
Vitesse de la masse inférieure (à énergie maxi) [m/s]		1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3
Profondeur des masses supérieure et inférieure [mm]		1100	1250	1350	1500	1600	1700	1850	2000	2150
Poids de la masse supérieure	[t]	4	6,7	8,4	10	13,5	16	21	27	33
Poids de la masse inférieure	[t]	16	25	31	40	50	63	80	100	125
Course de la masse supérieure pour atteindre l'énergie de frappe maxi	min. [mm]	525	525	525	525	525	525	525	525	525
Course de la masse inférieure	env. [mm]	185	185	185	185	185	185	185	185	185
Course maximale de la masse supérieure	max. [mm]	775	815	835	865	895	925	975	995	1015
Course des deux masses pour atteindre l'éner de frappe maximale (distance entre l'ébauche et matrice supérieure)	gie min. [mm]	710	710	710	710	710	710	710	710	710
Course maximale, ensemble des 2 masses	[mm]	960	1000	1020	1050	1080	1110	1160	1180	1200
Hauteur maxi de l'ensemble des 2 matrices (hors queues d'aronde, ébauche incluse)	[mm]	570	660	710	770	850	900	1000	1050	1120
Hauteur mini de l'ensemble des 2 matrices (hors queues d'aronde)	[mm]	320	370	400	430	480	500	550	580	630
Largeur libre entre les glissières de la masse supérieure	[mm]	700	800	850	950	1000	1050	1150	1250	1350
Largeur de la chabotte inférieure	[mm]	2600	3150	3300	3600	3900	4150	4500	4900	5250
Profondeur de la chabotte inférieure	[mm]	1700	2000	2150	2300	2500	2700	2600	3150	3400
Poids total	env. [t]	55	85	105	135	170	200	270	335	420
Hauteur de l'installation au-dessus du sol	env. [mm]	5000	5750	6200	6600	6800	7450	7750	8450	9150
Hauteur totale	env. [mm]	6750	8000	8600	9200	9600	10500	11000	12000	13000
Puissance de raccordement du moteur principal (pour 400 V / 50Hz)	[kW]	2 x 90	2 x 132	2 x 132	2 x 200	4 x 132	4 x 132	4 x 200	4 x 200	4 x 200
Puissance du circuit de refroidissement	[kW]	3	4	4	5,5	2 x 4	2 x 4	2 x 5,5	2 x 5,5	2 x 5,5
Puissance de refroidissement (raccordement)	[kW]	80	116	116	160	2 x 116	2 x 116	2 x 160	2 x 160	2 x 160
Puissance de raccordement de la pompe de lubrification	[kW]	2 x 0,18	2 x 0,18	2 x 0,18	4 x 0,18					
Puissance de raccordement totale	env. [kVA]	235	330	330	500	650	650	1000	1000	1000

[▶] Toutes les données sont des valeurs par défaut et peuvent être adaptées en fonction du contrat.

CONTACT

SIÈGE PRINCIPAL

LASCO UMFORMTECHNIK WERKZEUGMASCHINENFABRIK

LASCO Umformtechnik GmbH

Hahnweg 139 96450 Cobourg / ALLEMAGNE

Tél +49 9561 642-0 Mail lasco@lasco.de

Votre interlocuteur

Dipl-Ing. (FH)

Jochen Günnel / Directeur commercial

FRANCE

LASCO FRANCE (Bureau de vente)

1, allée des Cèdres 78860 Saint Nom La Bretêche Tél +33 1 30 80 05 28

Mail thierry.lebailly@lasco-france.fr

Scannez pour regarder notre vidéo d'entreprise!

Éditeur:

LASCO Umformtechnik GmbH Version 2.0 - 10/22

Crédits images :

LASCO Umformtechnik Hanke Industriedesign Adobe Stock

USA

LASCO UMFORMTECHNIK LASCO ENGINEERING SERVICES

LASCO Engineering Services L.L.C.

615 Harbor Avenue Monroe, MI 48162 / USA

Tél +1 734 241 0094

Mail lasco@lascoUSA.com

CHINE

LASCO UMFORMTECHNIK 拉斯科成形技术有限公司

LASCO Forming Technology Co. Ltd.

Huateng Tower, Unit 1706A Jia 302, 3rd Area of Jinsong, Chaoyang District 100021 BEIJING / P. R. CHINA

Tél +86 10 8773 0378 Mail lasco.beijing@lasco.de

RUSSIE

LASCO UMFORMTECHNIK ЛАСКО УМФОРМТЕХНИК СЕРВИС

OOO "LASCO Umformtechnik Service"

Dobroselskaja 212, Büro 309 600031 Wladimir / RUSSIE

Tél +7 492 2479 314 642-0 Mail lasco@lasco-russia.ru